
ODESA: Load-Dependent Edge Server Activation
for Lower Energy Footprint

Blas Gómez∗, Suzan Bayhan†, Estefanı́a Coronado∗‡, José Villalón∗ and Antonio Garrido∗
∗High-Performance Networks and Architectures, Universidad de Castilla-La Mancha, Albacete, Spain

Email: {Blas.Gomez, Estefania.Coronado, JoseMiguel.Villalon, Antonio.Garrido}@uclm.es
†University of Twente, The Netherlands. Email: s.bayhan@utwente.nl

‡I2CAT Foundation, Barcelona, Spain. Email: estefania.coronado@i2cat.net

Abstract—5G networks promise to deliver an unprecedented
performance that can accommodate novel services with stringent
Quality of Service (QoS) requirements that were not possible
with previous generations of networks. Edge Computing plays
a fundamental role by providing computing resources closer to
the user, reducing round trip times. However, the deployment
of edge computing poses new challenges, including the energy
footprint of a potentially large number of servers. Even in idle
state, these servers consume a significant amount of energy, which
is worth considering for reducing their energy footprint. In cloud
computing environments, server shutdown during low-demand
periods is a typical energy-saving strategy. However, this approach
has received less attention in edge computing due to the strict
latency requirements of its use cases. This work presents ODESA,
an edge server shutdown strategy with polynomial time complexity
that provides a trade-off between the idle energy consumption of
the edge servers and energy consumed by the backhaul to route
requests to active servers. Our numerical investigation shows
that thanks to the reduction in idle energy consumption, ODESA
reduces the total consumption by 42% over the common always-
on approach during low-demand periods and 11% over 24 hours,
all while meeting the latency requirements of the applications.

Index Terms—Edge Computing, Energy Consumption, Energy
Efficiency, 5G, Wireless Networks, Green Communications.

I. INTRODUCTION

Wireless networks have recently made great strides, offering
unprecedented features such as sub-millisecond latencies,
and multi-Gbps data rates that will take Quality of Ser-
vice (QoS) and user experience to previously unknown levels.
Consequently, Mobile Network Operators (MNOs) and third
parties can offer novel applications and services whose strict
QoS requirements cannot be satisfied by previous network
generations, such as augmented reality and medical robotics.
In this context, edge computing plays a key role by providing
computing resources closer to the user, reducing the delays
experienced in numerous use cases. However, global warming
and the ongoing energy crisis raise concerns about the energy
footprint of communications and computing infrastructures,
with different studies such as [1], [2] calling for network
infrastructure to be designed and operated with energy footprint
and sustainability aspects in mind. The European Union expects
edge systems to account for 12% of the computing infras-
tructure’s Carbon Dioxide Equivalent (CO2e) emissions by
2025 [3], highlighting the increasing need for more sustainable
computing infrastructures with lower energy footprint.

A large body of work on cloud computing such as [4]–[8]
report significant energy savings enabled by shutting down
servers during low-demand periods, e.g., when servers are
not performing any user operation [9], as energy consump-
tion during these idle periods is significant. Similarly, edge
computing involves the potential deployment of a multitude of
servers whose capacity is scaled to meet the demand at peak
hours, leaving a significant fraction of resources idle during
low-demand periods. However, server shutdown strategies have
received less attention in edge computing due to the strict
latency requirements of most of its use cases. Since edge
computing’s low latencies are possible thanks to the proximity
of the edge servers to the users, the impact of shutdown
strategies in the QoS of edge computing applications is unclear.
Although studies such as [10], [11] leverage this approach for
edge infrastructures, an assessment of the effect they can have
on deadline satisfaction is missing. Moreover, these strategies
neglect energy consumption due to routing requests from offline
servers to active ones through backhaul links.

This work presents ODESA, an edge server shutdown
algorithm with a polynomial time complexity that aims at
reducing the energy footprint of a cellular network’s co-
located edge computing infrastructure by selectively shutting
down edge servers when latency requirements of the served
applications can be fulfilled with the existing active edge
servers. Introduced together with the network orchestrator,
ODESA provides a trade-off between the idle energy con-
sumption of the servers and the energy consumed by the
backhaul derived from routing the requests to the active servers
while maintaining acceptable QoS. In particular, this paper
addresses the following questions: (i) How much energy can
be saved by the proposed scheme over two baseline schemes,
namely Always-on (i.e., where all edge servers are active) and
Threshold-based server shutdown (i.e., in which servers are
switched-off when their load is below a certain threshold)?
(ii) How does the proposed scheme perform in terms of deadline
satisfaction in a delay-constrained scenario?

The rest of the paper is organized as follows: Sec. II provides
an overview of the related work while Sec. III presents the
system model. Sec. IV introduces our energy-saving approach,
and Sec. V provides and discusses the performance evaluation
results. Finally, Sec. VI concludes the paper with a list of
future research directions.

II. RELATED WORK

This section reviews the most relevant work on energy-
efficient resource management in edge computing systems,
namely the studies [10]–[14] that propose several approaches
to decrease the energy consumption of edge servers.

In [12], the authors propose server clustering to save
energy using Dynamic Voltage Frequency Scaling (DVFS)
CPUs. However, they never turn off the servers. Similarly,
the authors [13] assume that each edge server has multiple
CPUs that can be independently turned off based on two
thresholds. This makes these two approaches constrained to
specific hardware, which limits their applicability. Contrary to
these studies, ODESA is hardware-agnostic. Both [12], [13]
assign tasks to servers to leave as many servers idle as possible.
Then, they rely on specific hardware to decrease idle energy
consumption. ODESA shuts down the servers, reducing idle
energy to zero without harming QoS and working with any kind
of hardware. The authors of [14] introduce a location-based
load prediction algorithm that uses historical data from an
edge server and the neighboring edge servers. While this study
acknowledges the potential benefits of using this algorithm to
implement server shutdown strategies, their focus is on load
prediction, and they do not quantify the mentioned benefits.

The approach proposed in [10] enables edge servers to sleep
when the load falls below a threshold, but it does not consider
the energy consumption of the backhaul needed to route
incoming requests to active servers. As per [1], the transmission
of information also significantly affects energy consumption
to the point that the energy consumed by the backhaul might
outweigh the energy savings from server shutdown. Their study
also lacks an evaluation of the impact in latency-constrained
services. In contrast, ODESA finds a compromise between
the energy saved by shutting down servers and the energy
consumed by routing the requests through the backhaul to the
remaining active servers. Moreover, we study the impact of
ODESA on latency-constrained scenarios. Another edge server
shutdown study is presented in [11]. The authors propose
a game-theory approach to optimize costs (instead of energy
consumption) by shutting down routers and servers. Their study,
which assumes fixed running costs, shows latencies that are
unsuitable for latency-constrained use cases, such as vehicular
safety. In contrast, our approach focuses on applications with
stringent delay requirements and our evaluation models energy
consumption dynamically. Moreover, ODESA considers an
architecture that places edge servers closer to the user.

In summary, our contributions are three-fold: (i) proposing a
hardware-agnostic edge server shutdown strategy that (ii) con-
siders the backhaul infrastructure and (iii) evaluating its impact
on latency-constrained services in a realistic scenario.

III. SYSTEM MODEL

This section presents the considered system model with its
components as illustrated in Fig. 1.
Communication network: We consider a 5G Radio Access
Network (RAN) with the set of Base Stations (BSs) denoted by
B = {BS1, . . . , BSN}. The BSs are interconnected through a

given set of links L, which establishes connectivity to the
Internet and the management plane through the backhaul
network. We denote this connectivity graph by G = ⟨B,L⟩.
Each link ℓ is identified by its source and destination BSs and
associated link capacity denoted by αi,j . We assume that the
link capacity from BSi to BSj is equal to the capacity in the
reverse direction. Consequently, we represent each link as a
three tuple: ℓi,j = ⟨BSi, BSj , αi,j⟩. For the sake of simplicity,
we assume a fixed routing algorithm between two BSs, and
the associated routing matrix is denoted by Γ, which consists
of paths between two BSs.

Edge computing infrastructure: The cellular network has a co-
located set of edge servers denoted by H = {hm}. Without loss
of generality, we assume that each edge server is associated with
a BS. Since MNOs might not prefer deploying edge servers at
every BS, we indicate by a binary variable ei whether BSi hosts
an edge server. We assume that a particular edge server hm ∈ H
can accommodate a finite set A of computation services, such as
accident detection or traffic control in vehicular scenarios. We
denote the computing capacity of hm by Cmax

m in operations
per second. To summarize, an edge server is defined by the
following tuple ⟨BSi, C

max
i ⟩. When we refer to the edge server

at BSi, we denote it by hi. An edge server located at BSi

might serve computing requests originating from other BSs,
e.g., a BS without an edge server.

Computing requests: Each computing request is characterized
by a four tuple ⟨ok, V in

k , V out
k , Tmax

k ⟩ where ok is the workload,
V in
k is the size of the input data, V out

k is the size of the
output, and Tmax

k is the delay budget for this task, which
indicates the maximum time before a request’s result has to be
delivered to the user1. The total delay of a request is given by
Tu
i,k+T r

i,k+T c
i,k+T o

i,k+T d
i,k ≤ Tmax

k , where Tu
i,k is the delay to

upload a request to ak through BSi, T r
i,k is the delay of routing

the request through the backhaul, T c
i,k is the computing delay,

T o
i,k is the delay to route the output back to the corresponding

BS and T d
i,k is the delay of downloading the output from the BS.

Each request made to ak ∈ A results in a computing workload
of ok in terms of number of operations required to accomplish
the task. Requests to BSi for a particular service ak arrive at
a service request rate λi,k, which depends on the number of
users and characteristics of the service [15]. Consequently, the
workload produced by the requests received at BSi due to ak
is given by okλi,k. We assume that the computing capacity
of hi is proportionally split between the set A that it hosts
according to the number of operations to be executed by each
service in A [16].

Operation of the edge orchestrator: The edge computing
infrastructure is managed by an orchestrator located at the
Service Management and Orchestration (SMO) layer, which
also encloses the government of the RAN and the transport
network.2 It manages the capacity of the servers and selects

1For the sake of simplicity, we implicitly assume that the result of the
computation is delivered to the same user submitting the request. More
sophisticated patterns, e.g., one-to-many, can also be considered.

2Federation across MNOs is out of the scope of this work.

Fig. 1. A cellular network with edge servers. The edge orchestrator uses
ODESA to determine an efficient resource allocation and determines where to
execute the requests, how to route the requests to the assigned edge servers,
and which servers to switch off to minimize the network’s energy consumption.

the appropriate one to serve the requests. For energy-saving
purposes, the orchestrator can shut down edge servers. When
the edge server hi ∈ H attached to BSi ∈ B is off, computing
requests received by BSi are redirected to another active edge
server hj ∈ H. At a given time, the orchestrator can decide on
the following parameters to optimize the QoS or save energy:

• Fraction of requests of ak received by BSi to be computed
by the edge server of BSj denoted by γi,k,j ∈ [0, 1].

• Status of each edge server denoted by ηi ∈ {0, 1} where
ηi = 0 means that hi will be switched off.

In the next section, we introduce ODESA, our approach to
finding a combination of these values that reduces the energy
footprint while meeting the deadlines of the requests.

Energy consumption: An edge server hm ∈ H has a specific
baseline energy consumption (Eidle

m) when it is not performing
user operations. Each operation carried out by hm adds a certain
energy consumption on top of Eidle

m denoted as Em [17]. We
denote the total number of operations of a server hm by Om,
which is given by the fraction of requests routed to hm for
each service (γi,k,mλi,k) and the workload of each request
(ok). Then, the energy consumed by the set H is given by:∑

hm∈H

ηm
(
Eidle

m +OmEm

)
. (1)

Routing requests to another BS’s edge server also requires
energy. Let σo,p denote the energy consumed per bit transmitted
over a link ℓo,p. To reach the designated edge server, a request
might need to be routed through multiple hops, being the
total σi,j of the path given by

∑
ℓo,p∈L σo,pp

i,j
o,p where pi,jo,p

indicates whether a link is in the shortest path between BSi

and BSj . The volume of data traversing a link ℓo,p, denoted
as Vo,p, determines total energy consumption. Vo,p is given by(
V in
k +V out

k

)
λi,kγi,k,jp

o,p
i,j where λi,kγi,k,jp

o,p
i,j is the number

of requests routed from any BSi to any BSj whose shortest
path goes through ℓo,p and V in

k +V out
k is the input and output

TABLE I
SUMMARY OF KEY NOTATION.

Symbol Definition
B, N The set of BSs and the number of BSs
L, G, Γ The set of links, the connectivity graph and the routing matrix
ℓi,j , αi,j The link connecting BSi and BSj and its capacity
H, hm The set of edge servers and a particular server
Cmax

m The maximum capacity of hm in operations per second
ei Variable indicating the presence of an edge server at BSi

A, ak The set of services and a service instance
V in
k , V out

k , ok Size of the input and output and the workload of a req. to ak
λi,k Arrival rate of requests from BSi to service ak
γi,k,j Fraction of λi,k to be routed to hj

ηi Status (on/off) of edge server hi ∈ H
po,pi,j Indicator of ℓo,p’s presence in the path from BSi to BSj

Tmax
k Delay budget of service ak ∈ A

T c
j,k Time to compute a response

Tu
i,k , T d

i,k Time to send a req. and to download it in the RAN
T r
i,k , T o

i,k Request and output routing times for hm ∈ H.
Eidle

m , Em Energy of hm when idle and energy per operation
Om Total workload in operations per second of hm ∈ H

data generated by each request. Thus, we can denote the total
energy consumed by all links L to route the requests as follows:∑

ℓo,p∈L

σo,pVo,p. (2)

IV. ODESA: LOAD-DEPENDENT EDGE SERVER
ACTIVATION FOR LOWER ENERGY FOOTPRINT

The problem of resource allocation at the edge is known to
be typically NP-hard [18]. In our system model, assuming
that there is only one service (|A|= 1) and that the link
capacities are sufficiently large (i.e., αi,j = ∞ ∀ℓi,j), this
problem could be formulated as a Capacitated Facility Location
Problem (CFLP). CFLP has two stages: first, determining which
subset of edge servers to turn on (facilities to open), and second,
deciding what fraction of requests is routed from each BS to
each edge server (assigning customer demand to facilities).
Because CFLP is NP-hard [19], we propose a lower-complexity
heuristic for determining γi,k,j and ηi for all i, j, k.

Our heuristic, whose steps are listed in Alg.1, is based on the
DROP procedure [20], a greedy algorithm used to solve CFLP.
Our adaptation of DROP begins by initializing the vector η
with all the edge servers active. Then, the matrix γ is initialized
to route requests to the closest server (the local one for BSs
with a co-hosted server, i.e., i = j), where they are attended
in a First In First Out (FIFO) manner. If the closest server
cannot handle all the requests from a BS, the remaining ones
are routed to the closest server. After checking all reachable
servers, the remaining requests are rejected.

After the initialization, the algorithm loops through all the
servers. At each iteration, the edge server hj with the highest
Eidle is shut down. Consequently, requests to all to all services
ak received at all BSi that were previously served by hj

(i.e., γi,k,j > 0) must be routed to other servers. To give
priority to the services with tighter latency constraints in the
closest servers, the services are sorted according to their delay
budget, Tmax . Additionally, candidate servers in the set Hcan

Algorithm 1 ODESA energy saving heuristic
1: Initialize η and γ
2: Sort H according to Eidle in descending order
3: Sort A according to Tmax in ascending order
4: for each hj in H do
5: Eon ← current energy, ηj ← 0, Eoff ← 0
6: for each ak in A do
7: for each BSi in B do
8: Hcan ← {hm : ∃ ℓi,m ∧ T r

i,k,m + Tu
i,k,m < Tmax

k }
9: Sort Hcan according to σi,j in descending order

10: for each hm in Hcan do
11: if λi,kγi,k,jV

in
k ≤ α then

12: if okλi,k < Cmax
m −Om then

13: γi,k,m ← γi,k,j , γi,k,j ← 0
14: else
15: γi,k,m ← (Cmax

m −Om)/λi,k

16: γi,k,j ← γi,k,j − γi,k,m
17: αi,m ← αi,m − V in

k λi,kγi,k,m
18: else
19: if okλi,k < Cmax

m −Om then
20: γi,k,m ← λi,kαi,m/V in

k

21: γi,k,j ← γi,k,j − γi,k,m, αi,m ← 0
22: else
23: γi,k,m ← γi,k,j , γi,k,j ← 0
24: αi,m ← αi,m − V in

k λi,kγi,k,m
25: Eoff ← Eoff + Eoff

k,m

26: if Eoff ≥ Eon or
∑

BSi∈B
∑

ak∈A γi,k,j ̸= 0 then
27: ηj ← 1, Undo changes
28: if any Tu + T r + T c + T o + T d ≤ Tmax then
29: while Server with deadline violations found do
30: hj ← Last server turned off, ηj ← 1
31: Move load from server with deadline violations to hj

(made of all hm that have a path connecting them with BSi

and can be reached within the delay budget) are ordered
according to the σi,m of the path to prioritize shorter and
more efficient paths. Then, for each candidate server hm, the
algorithm checks its free capacity (given by the difference
between its maximum capacity Cmax

m and the capacity in use
Om) and the remaining capacity of the link, denoted as αi,m.
If both capacities are sufficient, the orchestrator reroutes all
requests previously routed to hj to hm. If not, it routes as many
requests as possible to hm and tries to route the remaining
requests to the rest of the candidates.

Considering the energy consumption of routing requests
through the backhaul is essential, as it may negate the energy
saved by shutting down the edge server. ODESA addresses
this by keeping track of the energy difference between shutting
down the edge server and routing the requests to other servers
(Eoff) and keeping it on (Eon). If Eoff ≥ Eon, the server hj

is kept on, the original routing is maintained, and the changes
calculated by ODESA are rejected. ODESA also checks if all
requests previously attended at hj are routed to other edge
servers (

∑
BSi∈B

∑
ak∈A γi,k,j = 0). If that is not the case,

the routing changes are also rejected, and the server is kept on.
Similarly, when the main loop has ended, ODESA checks if all
Tmax are satisfied. If deadline violations are found, ODESA
turns on hj and routes requests from the overloaded servers,
which are typically those causing such violations.

The time complexity of Alg. 1 is a function of the num-

Fig. 2. Simulation scenario in the map of Elburg, Netherlands, with the
location of the BSs’ of a real MNO and the added backhaul links.

TABLE II
SIMULATION PARAMETERS

Parameter Value
Max. Users 3800
Max. Server Capacity (Cmax) 11500941 ops/s
Idle server consumption Eidle 223 J/s
Max. server consumption (Emax) 719 J/s
Link Capacity (α) 1 Gbps
Link energy consumption (σ) 5.9 nJ/bit
Req. workload (ok) 7000 ops/s
Delay budget (Tmax) 5 ms
Request arrival rate (λ) 15 req/s
Data volumes (V in and V out) 1600 and 100 bytes

ber of edge servers in H, which must be traversed twice
(Lines 4 and 10 of Alg. 1), the number of services in A, which
is iterated once (Line 6), and the number of BSs in B, which is
also traversed once (Line 7). Thus, the time complexity of the
energy optimization heuristic is O(|H|2×|A|×|B|). However,
in practical scenarios, the number of edge servers and BSs
greatly exceeds the number of services (|B|≫ |A|, |H|≫ |A|)
and the number of edge servers is, at most, equal to the
number of BSs (|B|⩾ |H|). Therefore, the complexity can
be represented as O(N3) where N = |B|.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of ODESA
using the following baselines for benchmarking: (i) always-on,
(ii) servers sleep when their load is below a 10% threshold [10].

A. Scenario and Parameters

This scenario aims to evaluate ODESA in a realistic small-
scale setting. Hence, we consider the infrastructure based on
real data [21] of a single MNO in the municipality of Elburg,
the Netherlands, which consists of 7 BSs located in various
positions across the municipality, as shown in Fig. 2. For the
sake of simplicity, we assume all BSs have an edge server
with identical hardware. Specifically, we assume the servers
are HP Enterprise ProLiant DL360 Gen11 equipped with Intel
Xeon 8480+ CPUs. Table II shows the energy consumption and
capacity of the servers driven by the benchmarks in [22]. Note
that the energy per operation can be obtained as E = (Emax−
Eidle)/Cmax where Emax represents the energy consumption
when the server operates at 100% of its capacity. We assume

00:00
03:00

06:00
09:00

12:00
15:00

18:00
21:00

00:00
Time (s)

0.0
0.5
0.9
1.4
1.8
2.2
2.7
3.1
3.6
4.0
4.5

Po
we

r (
kW

)

(a) Total energy consumption.

00:00
03:00

06:00
09:00

12:00
15:00

18:00
21:00

00:00
Time (s)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

Po
we

r (
kW

)

(b) Baseline energy consumption of the edge servers.

00:00
03:00

06:00
09:00

12:00
15:00

18:00
21:00

00:00
Time (s)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Po
we

r (
kW

)

×10 3

(c) Energy consumption of the backhaul links.

Always-On Threshold ODESA

Fig. 3. Energy consumption of the infrastructure for the three compared strategies over a 24 hour period.

Total Energy
70
71
72
73
74
75
76
77
78
79

En
er

gy
 (k

W
h)

Idle Energy
28
29
30
32
33
34
35
36
37
38

Backhaul Energy
3.5
4.3
5.2
6.1
6.9
7.8
8.7
9.5

10.4
11.3

×10 3

Always-On Threshold ODESA

Fig. 4. Accumulated total energy consumption, idle energy consumption of the
servers, and energy consumption of the backhaul in kWh after the 24-h period.

that the BSs are connected through the X2 interface with
1 Gbps fiber optics links following the topology shown in
Fig. 2 using Edge Routers Cisco ASR9010, which consume
5.9 nJ per bit transmitted. The layout of the links is partially
obtained from [21], where one radio link is provided, shown in
green in Fig. 2. However, as this information is insufficient to
connect all the BSs and determine their capacity, we assumed
fiber optic links in some of the BSs depicted in red in Fig. 2.

Since our main objective is to assess the deadline satisfaction
of latency-constrained services, we consider a single service and
simulate a vehicular safety service with a stringent delay budget
of 5 ms. We model users as vehicles moving randomly through
the roads according to the speed limit. The arrival rate of the
service requests for each user follows a Poisson distribution,
with an expected number of arrivals of 15 requests/s [23].
The input data of each request is 1600 Bytes, in line with
evaluation use cases in [24], while we assume the output is
100 Bytes. Additionally, each request requires 7000 ops/s in
the servers [17]. We simulate a 24-hour period in which the
number of active users varies according to the time-traffic
distribution presented in [24]. According to this, 16% of all
users are active during the peak hour, and only 2% are active
during the valley hour. We set the total number of users to 3800
to ensure that the computing infrastructure can handle the peak
load with a safety margin of 20%, ensuring that the system is
not overloaded. This is a common approach to dimensioning
the capacity of this type of infrastructure.

00:00
03:00

06:00
09:00

12:00
15:00

18:00
21:00

00:00
Time (s)

0.0
0.7
1.4
2.1
2.8
3.5
4.2
4.9
5.6
6.3
7.0

De
la

y
(m

s)

(a) Average delay.

00:00
03:00

06:00
09:00

12:00
15:00

18:00
21:00

00:00
Time (s)

0.0%
0.4%
0.8%
1.1%
1.5%
1.9%
2.2%
2.6%
3.0%
3.4%
3.7%

(b) Share of unsatisfied requests.
Always-On Threshold ODESA

Fig. 5. Average delay and share of requests with an unsatisfied deadline
(5 ms) over the 24 hour simulated period.

B. Results Discussion

Energy consumption: Fig. 3 shows the breakdown of the
power consumption over a 24-hour period. ODESA reduces
the total power consumption shown in Fig. 3a, which is
mainly attributed to ODESA’s ability to shut more edge servers
down during periods of low and moderate demand, as well as
keeping them off for more extended periods, thereby reducing
the idle power, as depicted in Fig 3b. The threshold-based
approach cannot shut down as many servers and turns them
back on sooner, which results in lower energy savings. Although
increasing the load threshold may allow it to shut down more
servers, this approach’s impact on deadline satisfaction renders
it unfeasible, as discussed below. Shutting down edge servers
increases ODESA’s backhaul power consumption, as shown
in Fig. 3c, but the savings achieved by doing this outweigh
this increase as the backhaul energy represents just 0.01% of
the total energy consumption, whereas the idle and processing
energies represent 43% and 57%, respectively. It is noteworthy
that in scenarios with larger input and output data or more
energy-consuming links, the portion of backhaul energy would
be more significant. In that case, ODESA would strike a balance
between shutting down servers and using the backhaul links.
ODESA achieves an average reduction of 11% in total energy
consumption compared to the always-on approach and 2.25%
compared to the threshold-based approach, as shown in Fig. 4.
Notably, ODESA reduces the energy consumption by 42%

compared to the always-on approach and 16% compared to the
threshold-based approach during the lowest demand period (be-
tween 03:00 and 08:00). However, during peak demand at 21:00,
when all servers must be active to provide enough capacity for
all requests, ODESA is unable to reduce energy consumption.
Deadline satisfaction: The energy footprint reduction has
minor effects on the QoS, as shown in Fig. 5. As more
edge servers are shut down, the requests must be routed to
more distant servers, and users have to share less resources.
Therefore, a degradation in the average delay is expected for
the shutdown strategies. However, this is acceptable as long
as it is below the 5 ms delay budget. Fig. 5a depicts how this
degradation is more pronounced during low-demand periods for
ODESA as it leaves fewer servers active. As computing time
tends to be the biggest contributor to the total delay, ODESA
redistributes load across the servers during low-demand periods
when it detects potential deadline violations. This gives it an
advantage over the threshold-based approach, as shown in
Fig. 5a. Despite the increment in the average delay, ODESA
can satisfy the requests, as shown in Fig. 5b, where it is the
approach with the lowest share of deadline violations, only
0.06%. The always-on approach presents 0.4% of deadline
violations, and the threshold-based approach delivers an average
of 1.4% of requests after their deadline. Since this scheme bases
its decision only on the servers’ load, requests are redirected to
overloaded servers. ODESA prevents this by rerouting requests
from overloaded servers to the most recently reactivated server.

VI. CONCLUSIONS

In this work, we presented ODESA, an energy-saving
strategy for edge computing environments that shuts down
edge servers to save energy achieving a compromise between
the energy consumed by idle servers and by the backhaul
to route requests to active servers. Our analysis shows that
ODESA achieves a considerable reduction of 11% in the energy
footprint on the operation of the edge servers compared to the
commonly implemented always-on approach while ensuring
deadline satisfaction. By dynamically shutting down idle servers
during low-demand periods, ODESA offers a sustainable and
cost-effective solution for deploying edge computing services.
Future work will focus on investigating the impact of varying
server densities and load on the performance of ODESA, as well
as reducing the computational complexity of the heuristic to
enable faster decision-making. Additionally, we plan to explore
the use of prediction schemes to enable proactive changes to
server states and further improve energy efficiency.

ACKNOWLEDGEMENTS

This work is part of the R&D project PID2021-123627OB-
C52, funded by the MCIN and the European Regional De-
velopment Fund: “a way of making Europe”. This work is
also funded by the European Union: “The European Social
Fund investing in your future” (Grant 2019-PREDUCLM-
10921), the Government of Castilla-La Mancha (project SB-
PLY/21/180501/000195) and UCLM (project 2023-GRIN-
34056). This work is also supported by the EU “NextGen-

erationEU/PRTR”, MCIN, and AEI (Spain) under project
IJC2020-043058-I and the EU’s H2020 XGain project (GA No
101060294). The authors from UT acknowledge the support of
the Faculty of EEMCS under the research grant EERI: Energy-
Efficient and Resilient Internet. Blas Gómez thanks UCLM’s
Vice-rectorate of Science Policy for the mobility grant.

REFERENCES

[1] B. Ramprasad, A. da Silva Veith et al., “Sustainable computing on the
edge: A system dynamics perspective,” in Proc. of ACM HotMobile,
2021, pp. 64–70.

[2] R. Jacob and L. Vanbever, “The internet of tomorrow must sleep more
and grow old,” in Proc. of HotCarbon, 2022.

[3] “Energy-efficient Cloud Computing Technologies and Policies for
an Eco-friendly Cloud Market | Shaping Europe’s digital future,”
https://digital-strategy.ec.europa.eu/en/library/energy-efficient-cloud-
computing-technologies-and-policies-eco-friendly-cloud-market, 2020.

[4] U. Wajid, C. Cappiello et al., “On Achieving Energy Efficiency and
Reducing CO2 Footprint in Cloud Computing,” IEEE Trans. Cloud
Comput., vol. 4, no. 2, pp. 138–151, 2016.

[5] T. Mastelic, A. Oleksiak et al., “Cloud Computing: Survey on Energy
Efficiency,” ACM Comput. Surveys, vol. 47, no. 2, pp. 1–36, Dec. 2014.

[6] I. Raı̈s, A.-C. Orgerie, and M. Quinson, “Impact of Shutdown Techniques
for Energy-Efficient Cloud Data Centers,” in Proc. Springer ICA3PP,
J. Carretero, J. Garcia-Blas et al., Eds., vol. 10048, 2016, pp. 203–210.

[7] R. Buyya, A. Beloglazov, and J. Abawajy, “Energy-Efficient Management
of Data Center Resources for Cloud Computing: A Vision, Architectural
Elements, and Open Challenges,” in Proc. of PDPTA, 2010.

[8] Y. C. Lee and A. Y. Zomaya, “Energy efficient utilization of resources in
cloud computing systems,” The Journal of Supercomput., vol. 60, no. 2,
pp. 268–280, May 2012.

[9] D. Meisner, B. T. Gold, and T. F. Wenisch, “PowerNap: Eliminating
Server Idle Power,” in Proc. of ACM ASPLOS, 2009.

[10] S. Wang, X. Zhang et al., “Cooperative Edge Computing With Sleep
Control Under Nonuniform Traffic in Mobile Edge Networks,” IEEE
Internet of Things J., no. 3, pp. 4295–4306, Jun. 2019.

[11] B. Wu, J. Zeng et al., “New Game-Theoretic Approach to Decentralized
Path Selection and Sleep Scheduling for Mobile Edge Computing,” IEEE
Trans. Wireless Commun., vol. 21, no. 8, pp. 6125–6140, Aug. 2022.

[12] J. Ahn, J. Lee et al., “Power Efficient Clustering Scheme for 5G Mobile
Edge Computing Environment,” Mobile Netw. and Appl., vol. 24, no. 2,
pp. 643–652, Apr. 2019.

[13] A. A. Amer, I. E. Talkhan, and T. Ismail, “Optimal Power Consumption
on Distributed Edge Services Under Non-Uniform Traffic with Dual
Threshold Sleep/Active Control,” in Proc. of IEEE NILES, 2021.

[14] C. N. L. Tan, C. Klein, and E. Elmroth, “Location-aware load prediction
in Edge Data Centers,” in Proc. of IEEE FMEC, 2017.

[15] J. Navarro-Ortiz, P. Romero-Diaz et al., “A Survey on 5G Usage Scenarios
and Traffic Models,” IEEE Commun. Surveys Tuts., vol. 22, no. 2, pp.
905–929, 2020.

[16] P. Wang, Z. Zheng et al., “HetMEC: latency-optimal task assignment and
resource allocation for heterogeneous multi-layer mobile edge computing,”
IEEE Trans. Wireless Commun., vol. 18, no. 10, pp. 4942–4956, 2019.

[17] P. Wiesner and L. Thamsen, “LEAF: Simulating large energy-aware fog
computing environments,” in Proc. of IEEE ICFEC, 2021, pp. 29–36.

[18] B. Yang, W. K. Chai et al., “Cost-efficient nfv-enabled mobile edge-
cloud for low latency mobile applications,” IEEE Trans. on Network and
Service Management, vol. 15, no. 1, pp. 475–488, 2018.

[19] J. Krarup and P. M. Pruzan, Selected Families of Discrete Location
Problems: Part III, the Plant Location Family. Research Library, Faculty
of Business, University of Calgary, 1977.

[20] S. K. Jacobsen, “Heuristics for the capacitated plant location model,”
Eur. J. Oper. Res., vol. 12, no. 3, pp. 253–261, 1983.

[21] “Antennekaart,” https://antennekaart.nl, accessed: 15/04/2023.
[22] Standard Performance Evaluation Corporation, “SPECpower results.”

[Online]. Available: https://www.spec.org/power ssj2008/results/
[23] “5G-PPP use cases and performance evaluation modeling,” Accessed:

15/04/23. [Online]. Available: https://5g-ppp.eu/wpcontent/uploads/2014
/02/5G-PPP-use-cases-and-performance-evaluation-modeling v1.0.pd

[24] “METIS-II Mobile and Wireless Communications Enablers for
Twenty–Twenty Information Society II,” 2020, Accessed: 15/04/2023.
[Online]. Available: https://metis-ii.5g-ppp.eu/

